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Abstract. We study classical chaos in the system of a two-level Rydberg atom interacting with a pulsed
standing microwave. This model approaches the form of an atom optics realization of a usual delta-kicked
rotor under the rotating-wave approximation (RWA). We find that the non-energy-conserving processes
or virtual photon processes neglected in the RWA have a strong effect on the classical chaos, which can
enhance, reduce and even completely suppress the chaos under certain kicked conditions. The system
displays non-KAM dynamical behavior for rational and irrational kicks.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 05.45.Ac Low-dimensional chaos

1 Introduction

In the study of classical chaos, a prototype model is the
delta-kicked rotor (DKR) [1], whose classical dynamics is
described by the well-known Chirikov standard map [2]
(CSM). This is a 2D continuous perturbed twist map, with
a transition point, discriminating between motion that is
bounded (prevalently regular on invariant Kolmogorov-
Arnold-Mose (KAM) tori) or unbounded and diffusive
(prevalently chaotic). In the quantum case, the DKR
can generate dynamical localization, namely, the quan-
tum suppression of classical diffusion [3]. This and re-
lated models have been achieved in atom optics [4–7], mi-
crowave, and periodic train of impulses driven Rydberg
atom systems [8–10]. But, to our knowledge, in all the
atom optics studies of the DKR [4–7], the rotating-wave
approximation (RWA) was used, and the counter-rotating
terms, which correspond to highly non-energy-conserving
processes or virtual photon processes were neglected. This
is generally a very good approximation in quantum op-
tics [11] and high atomic transition frequency regions.
However, we should keep the counter-rotating terms or
virtual photon processes in the strong interaction of mi-
cromaser and Rydberg atoms. The reason for this is
that the transition frequency between the two Rydberg
atomic levels concerned in the interaction is much lower
than that in usual atom optics DKR where the atomic
transition frequency is in the visible or near IR regions.
Detailed discussion will be given in the following section.
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We should note that in the studies of nonlinear dynam-
ics of microwave driven Rydberg atom systems so far, the
“pendulum approximation” [3] was made, and the effect
of electron transition between different energy levels on
the time dependence of electron dipoles is neglected, so
that the dipole matrix elements are proportional to the
square of the principal quantum number of the electron
orbit. This leads to the result that matrix elements are
a slowly varying function of time. On the other hand,
all these studies are in a center-of-mass system, and rela-
tive motion between electrons in Rydberg states and the
atomic core are important. Since the diameters of Rydberg
atoms are much less than the microwave wavelength, mi-
crowave pulses can be treated as a sinusoidal perturbation
E = E0 cosωLt. The momentum absorbed by Rydberg
atoms from microwaves is therefore independent of the co-
ordinates of the center-of-mass system. Furthermore, the
pulse widths of the microwaves used in these studies were
usually much larger than the period ν−1

L of the microwave.
From the above discussions we clearly see that the virtual
photon processes have ignored effects on the dynamics in
these studies.

In this paper we investigate the classical chaos in the
system of a two-level Rydberg atom, which has large elec-
tron orbit and long lifetime, interacting with a pulsed
standing microwave, in which the Rydberg atom is sub-
jected to a train of standing microwave pulses with rep-
etition frequencies νT = 1/T and pulse duration Tp. If
the microwave frequency ωL � T−1

p � τ−1
n (τn is the

Rydberg atom lifetime), the interaction between the mi-
crowave and Rydberg atom will be both time and position
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dependent, and the systems will exhibit richer classical
and quantum dynamics than DKR. To the best of our
knowledge, the dynamics of this model have not been stud-
ied thus far. The study of this model will provide new
insight into classical dynamics, classical-quantum corre-
spondence, and quantum dynamics.

2 The effect of virtual photon

The system we consider is the exact interaction of a cold
two-level Rydberg atom with transition frequency ω0 be-
tween its lower |1〉 and upper level |2〉, and a pulsed
standing microwave E = E0 cos(kLx) cos(ωLt). The exact
Hamiltonian for the system is described by

H =
1
2

�ω0σ̂z +
p2

2µ

− D · E0(σ+ + σ−) cos(ωLt) cos(kLx)
∞∑

n=−∞
f(t − nT ),

(1)

where σ+ = |2〉〈1|, σ− = |1〉〈2|, and σz = |2〉〈2| − |1〉〈1|
are the Pauli operators, which satisfy the commutation
relations:

[σ+, σ−] = σz , [σz , σ±] = ±2σ± (2)

and f(t) specifies the temporal shape of the pulses. p is
the center-of-mass momentum, and µ is the atomic mass.
We transform the Hamiltonian into a frame rotating with
the microwave frequency ωL by a unitary transforma-
tion T = e

1
2 iωLtσz

H = THT + − i�T Ṫ +

=
p2

2µ
+

1
2

�∆σz

−�Ω cos(kLx) cos(ωt)(σ+eiωLt + σ−e−iωLt)

=
p2

2µ
+

1
2

�∆σz − 1
2

�Ω cos(kLx)(σ+ + σ−)

−1
2

�Ω cos(kLx)(σ+ei2ωLt + σ−e−i2ωLt) (3)

where Ω = D · E0/� is the resonant Rabi frequency, and
∆ = ω0 − ωL is the detuning. For convenience, the term∑
n

f(t − nT ) is dropped for the time being. In the RWA,

the counter-rotating term, that is the last term contain-
ing e±i2ωLt is neglected if the coupling is weak [11]. It is
unimportant because in quantum optics, the time scales
are usually large compared with ν−1

L , so this term will be
approximately averaged to zero. But, in the present case,
the width of the microwave pulses Tp can reach the pe-
riod ν−1

L of the microwave. So the counter-rotating terms
must be kept. The Hamiltonian H can be diagonalized in
atomic state space (|1〉, |2〉) and written as:

H̄ =
p2

2µ
+

√
1
4

�2∆2 + �2Ω2cos2(kLx)cos2(ωLt) σz (4)

In the limit of large detuning ∆2 � Ω2, H̄ can be writ-
ten as:

H̄ =
p2

2µ
+

[
1
2

�∆ + 2K + 2K cos(2ωLt)

+4Kcos2(ωLt) cos(2kLx)
]
σz. (5)

Here K = �Ω2/8∆ is the coupling constant. The terms
1
2�∆ + 2K + 2K cos(2ωLt) can be removed by a unitary
transformation U = exp{[i(1

2∆+ 2K
�

)t+ iK
�ωL

sin (2ωLt)]σz}

H̄ ′ = UH̄U+ − i�UU̇+

=
p2

2µ
+ 4Kcos2(ωLt) cos(2kLx)σz . (6)

From the Hamiltonian we can obtain two uncoupled dif-
ferential equations for the excited and ground state am-
plitudes. Assuming the Rydberg atom is initially in its
ground state, then we may neglect the excited state am-
plitude, and obtain the following Hamiltonian for the im-
pulsively driven (kicked) Rydberg atom

H =
J2

2I
+ 4K cos2(ωLt) cos θ

∞∑

n=−∞
f(t − nT ). (7)

Here J = p/2kL, θ = 2kLx and I = µ/4k2
L. Equation (7)

reduces to the result of the RWA [6] if the term
4 cos2(ωLt), which is caused by virtual photon processes,
is dropped. All new phenomena discussed in this paper
come from this time dependent coupling coefficient, that
is the virtual photon processes. It is obvious that the
optical potential is time modulated by the virtual pho-
ton processes. Before discussing the classical properties of
this Hamiltonian, several points should be stressed. Since
the recoil frequency ωr = �k2

L/2µ = 1.25 × 10−2/Aλ2
L

(A is the Rydberg atom mass in a.u., and λL is the wave-
length of the microwave in cm unit) of the Rydberg atom
is much less than 2π/Tp, that is ωrTp � 2π, the Rydberg
atom is in the Raman-Nath regime, and the motion of the
Rydberg atom during the interaction is negligible. Thus
the interaction of a Rydberg atom with a potential is
equivalent to the elastic collision between an atom and
a photon. After the interaction, the atom will receive a
momentum increase �p � 8KkLTp cos2(ωLTp) sin θ. On
the other hand, we can choose ωL ∼ 2π/Tn = n−3 (where
Tn = 2πn3 (a.u.) is the electron classical orbit period,
in an energy level with principal quantum number n),
so in the classical picture, the electron in a large orbit
can respond to the microwave and absorb the momentum
∆p = −

∫
E(t)dt (a.u.) from the pulses, that is the elec-

tron is “kicked” periodically. We should note that the peri-
odical “kicks” of the electron by the microwave may cause
the internal chaotic motion of the electron in a Coulomb
orbit [10]. But this internal chaotic motion is negligible
for �2 � Ω2 and a small Rydberg atomic orbit n (τn is
small compared with the characteristic time of the elec-
tron motion in orbit n).
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∆p can be calculated for a Gaussian pulse

f(t − nT ) =
1

Tp

√
2π

e
− (t−nT )2

2T2
p

(the specific temporal shape f(t) of the pulse has no
effect on the following conclusion), and Tp > ν−1

L ,
which gives ∆p = −

∫ Tp

0 E(t)dt ≈
∫ ∞
−∞ E(t)dt =

e−
1
2 T 2

p ω2
LE0 cos(nωLT ) cos(kLx). It is clear that ∆p = 0

for ωLTp � 1, in this case the RWA should be used.
However, we should not make the RWA for ωLTp � 1,
and the counter-rotating term should be kept. This is just
the case in an impulsively driven Rydberg atom system. In
the limit of arbitrarily short pulses, this system is equiva-
lent to the DKR with a time dependent coupling constant
caused by virtual photon processes. The nonzero pulse
widths lead to a reduction of the coupling strength with
increasing Tp. For simplicity, we let f(t−nT ) = δ(t−nT )
in the following discussion. From equation (7) we have the
following generalized standard map (GSM):

Jn+1 = Jn + 4K cos2(nωLTn) sin(θn)
θn+1 = θn + Jn+1Tn+1/I. (8)

The terms 4K cos2(nωLTn) completely specify the effect of
the virtual photons on the classical dynamics. It is obvious
that the map is not an autonomous map, so the orbits can
intersect. For ωLTn = mπ (m = integer), Tn = Tn+1 and
4Kc ≥ 1, the classical dynamics are globally chaotic. In
this case we see that the non-energy-conserving processes
lead to chaos even for weak coupling Kc ≥ 1/4. If ωLTn =
(m ± β/n)π, the virtual photon processes can enhance,
compared with the results of RWA, the classical chaos for
0 ≤ β < 1/3, and can suppress the chaos for 1/3 < β <
2/3. Notably, the dynamics of the system under RWA are
the same as that of the system without RWA for β =
1/2. The point to be stressed is that the virtual photon
processes can even completely suppress the classical chaos
for ωLTn = π(m ± 1/2n), a phenomenon that can not
occur in the RWA.

In order to numerically study the effect of virtual
photons on the classical dynamics, we transform equa-
tion (8) into scaled dimensionless form ρn+1 = ρn +
4K cos2(nωL) sin θn; θn+1 = θn + ρn+1 with τ = t/T ,
ρ = JT/I, ωL = ωLT , and 4K = 4K(8ωrT

2/�) =
0.1T 2Ω2/(2∆Aλ2

L). In the following discussions we focus
on two cases: ωL = (m ± α)π (0 < α < 1), where α is an
irrational number, and ωL = (m ± p/q)π (m = integer,
0 < p/q ≤ 1), where p/q is a rational fraction. For very
small K, in the CSM most of the map is composed of
KAM tori.

But in the GSM, if ωL = (m ± α)π, the invariant
curves do not exist at all, even for very small K (see
Fig. 1). The system is turned into another class of sys-
tems which is non-KAM [12,13]. In Figure 2, we demon-
strate a few phase maps at different values of K. It is
clearly seen that the system is non-KAM and non-islet
for any K. Different stochastic webs are the main char-
acteristic of this system. Thus diffusion can take place

Fig. 1. Classical phase space of GSM for K = 0.001, ωL =
(m ± 1/7π)π. Figure (b) shows a magnification of the dashed
square in (a).

Fig. 2. Classical phase space of GSM for ωL = (m ± 1/7π)π
and several values of K: (a) K = 0.001; (b) K = 0.01; (c) K =
0.05; (d) K = 0.15.

along the stochastic webs for any small K. As K in-
creases, the band structured stochastic layer becomes
wider and wider, and eventually covers the whole phase
space. This comes from the fact that cos2(nαπ) is not
a periodic function of n, and so do ρ and θ. If ωL =
(m ± p/q)π, most of the map is composed of KAM tori.
Since cos2(npπ/q) = cos2(pπ/q), cos2(2pπ/q), ..., cos2(pπ)
has q values in one map period, so one KAM curve in
CSM now becomes q KAM curves and these KAM curves
entangle (see Fig. 3b). The cross points generated by the
entangled KAM curves are not hyperbolic fixed points,
but the chaos firstly takes place in the neighborhood of
the cross points as K increases. Only period q fixed points
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Fig. 3. Classical phase space of GSM for K = 0.001, ωL =
(m ± 1/4)π. Figure (b) shows a magnification of KAM curves
in the dashed square in (a).

Fig. 4. Classical phase space of GSM for K = 0.05, ωL =
(m ± 1/4)π.

are founded in GSM, the positions of the period q fixed
points are at ρ = (1/q)2π and (1 − 1/q)2π (see Fig. 4),
unlike in CSM, the elliptic periodic orbits of different fixed
points, in most situations, cross each other (see Fig. 4).
When K increases, the elliptic periodic orbits separate and
then form high order elliptic periodic orbits as K increases
further. Eventually chaotic orbits cover the whole phase
space. The point to be stressed is that other chaotic or-
bits can enter into the elliptic orbits, which never occurs
in CSM as shown in Figure 4. We should note that the
system approaches non-KAM system as q −→ ∞. The
reason for this is that the period of cos2(npπ/q) increases
with increasing q, and eventually cos2(npπ/q) becomes an
aperiodic function of n.

At this point, it is natural to ask to what extent
the Rydberg atoms behave as classical particles? We

now briefly discuss this question. From the quantized
model, θ and ρ = JT/I satisfy the commutation relation
[θ, ρ] = iκ, where the scaled Planck constant κ = 8ωrT �
0.1T/Aλ2

L � 8.3 × 10−5 for T = 80 µs, λL = 0.31 cm,
and A = 1. This very small value of the scaled Planck
constant certainly suggests that the system behaves clas-
sically. In order to reveal the conditions under which the
system behaves quantum mechanically, we should calcu-
late the dynamical localization. Detailed discussions on
this subject will be presented elsewhere.

The results discussed above could be achieved in the
following proposed experiment [14]. We first trap and laser
cool neutral atoms (for example hydrogen) in a magneto-
optic trap (MOT), and then photo-excite the atoms to
create a Rydberg atom with large effective electron orbit
n∗ ≈ 40. The MOT is then turned off, a pulsed standing
microwave with νL = 97 GHz, ∆ = 6 GHz, T = 80 µs,
Ω = 800 MHz, and Tp � ν−1

L (from these parameters we
obtain K � 0.1, which is large enough for our present
studies) is turned on, during which the microwave de-
livers an impulsive momentum transfer (or “kick”) to
the Rydberg atoms and causes diffusive growth in the
center-of mass momentum. After the standing microwave
is turned off, the Rydberg atoms undergo free expansion
in the dark for a time t0 < τn, and then the atoms pass
through a resonant probe laser beam, which has been used
to create the Rydberg atom state n∗, and the amount of
absorption in the beam is measured by cooled CCD. We
can also use a resonant microwave to probe the atoms,
the amount of absorption n∗ → n∗ +1 in the beam can be
measured by an array of high frequency diodes. The free
evolution time t0 is measured by the time-of-flight tech-
nique. From the initial MOT size, the time t0, and the
spatial absorption spectrum we can determine the atomic
momentum distribution. The noise in the wings of the
momentum distribution can be reduced by filtering the
time-of-flight measurements using a Fourier technique.

3 Conclusion

In conclusion, we have studied the classical behavior of a
Rydberg atom interacting with a pulsed standing wave of
light, which is a generalization of the RWA result. The vir-
tual photon processes neglected in the RWA, can enhance,
reduce and even completely suppress classical chaos under
certain kicked conditions. The system is a non-KAM sys-
tem if cos2(nωLT ) is not a period function of n, and is a
KAM system if cos2(nωLT ) is a period function of n.

We would like to thank the referee for their valuable comments.
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